
Parallel I/O for climate models

V. Balaji
SGI/GFDL

Fifth European SGI/Cray MPP Workshop
Bologna, September 1999

Parallel I/O

“I/O certainly has been lagging in the last decade.” – Seymour Cray, Public
Lecture (1976).

“Also, I/O needs a lot of work.” – David Kuck, Keynote Address, 15th An-
nual Symposium on Computer Architecture (1988).

“I/O has been the orphan of computer architecture.” – Hennessy and Pat-
terson, Computer Architecture - A Quantitative Approach. 2nd Ed. (1996).

1

Parallel I/O

� Dataset distributed across many processors, to be written to a single
file.

� Single file distributed across multiple physical disks and I/O channels.

In the MPP context, we are principally concerned with the first of these,
though here we shall allow the second as well.

2

Requirements

� Compact dataset (no descriptor files, etc).

� Final dataset to bear no trace of parallelism.

� Insulated from underlying APIs, which must nonetheless be accessi-
ble.

� Modularity, extensibility, support for specific data formats (esp. netCDF).

� F90 bindings.

3

I/O for climate models

Climate and weather models typically write a lot more data than they read.
Reading is typically done once per run (input and restart files), whereas
writing is done frequently (3D snapshots written to disk at regular intervals).

Restart files are written at machine precision. Snapshots are generally
saved at 32 bits. (netCDF uses IEEE 32 bit data).

Climate experiments are often done in ensemble, and data shared among
many institutions.

4

GFDL climate models

GFDL climate models are mostly gridpoint finite-difference models, on log-
ically rectilinear grids. There is a strong emphasis on F90. Scientists tend
to do their own programming. Parallelism is based on the distributed mem-
ory, message passing model.

� MOM: Modular Ocean Model.

� GFDL Hurricane model.

� New (as yet unnamed) flexible modeling interface: includes spectral
and gridpoint hydrostatic atmospheric dynamical cores, NH dynamical
core under development, land, ice, ocean model interfaces, coupler.

5

Parallel programming interface

GFDL has a homegrown parallelism API written as a set of 3 F90 modules:

� mpp mod is a low-level interface to message-passing APIs (currently
SHMEM and MPI; MPI-2 and Co-Array Fortran to come);

� mpp domains mod is a set of higher-level routines for domain decom-
position and domain updates;

� mpp io mod is a set of routines for parallel I/O.

http://www.gfdl.gov/˜vb

6

mpp mod

mpp mod is a set of simple calls to provide a uniform interface to different
message-passing libraries. It currently can be implemented either in the
SGI/Cray native SHMEM library or in the MPI standard. Other libraries
(e.g MPI-2, Co-Array Fortran) can be incorporated as the need arises.

mpp mod is currently in use in all models at GFDL.

7

mpp mod design issues

� Simple, minimal API, with free access to underlying API for more com-
plicated stuff.

� Design toward typical use in climate/weather CFD codes (rectilinear
grid, halo update, data transpose).

� Performance to be not significantly lower than any native API.

8

The module is coded in F90 and makes extensive use of certain f90 fea-
tures that greatly enhance simplicity without affecting performance (e.g
function overloading). Where performance is suspect, some f77-style fea-
tures are used (e.g pass-by-address to mpp transmit). It uses one non-
standard yet widely used feature, Cray pointers, which are functionally
equivalent to C pointers, and are fairly widely available even on non-SGI
platforms.

9

mpp mod API

� Basic calls:

– mpp init()

– mpp exit()

– mpp transmit(): basic message passing call. Typical use assumes two trans-
missions per domain, e.g halo update.

– mpp sync()

� Reduction operators:

– mpp max()

– mpp sum(): provides bit-reproducible � � � � � algorithm as option.

10

mpp transmit performance

SHMEM implementation of mpp transmit on T3E:

� Latency: 11 � s (3 � s for bare shmem get).

� Peak bandwidth: 300 Mb/s.

� For messages longer than 1000 words, the two are not distinguishable.

Latency increase is due to code to handle dynamic arrays.

MPI bandwidth is 150 Mb/s. T90 bandwidth is 5 Gb/s.
11

mpp domains mod

Comprehensive domain decomposition information is held in a derived
type domaintype. We define domain as the grid associated with a task.
We define the compute domain as the set of gridpoints that are computed
by a task, and the data domain as the set of points that are required by the
task for the calculation. There can in general be more than 1 task per PE,
though often the number of domains is the same as the processor count.
We define the global domain as the global computational domain of the
entire model (i.e, the same as the computational domain if run on a single
processor).

12

2D domains are defined using a derived type domain2D, constructed as follows (see
comments in code for more details):

type, public :: domain_axis_spec
sequence
integer :: start_index, end_index, size, max_size
logical :: is_global

end type domain_axis_spec
type, public :: domain1D

sequence
type(domain_axis_spec) :: compute, data, global
integer :: ndomains
integer :: pe
integer, dimension(:), pointer :: pelist
type(domain1D), pointer :: prev, next

end type domain1D

13

!domaintypes of higher rank can be constructed from type domain1D
type, public :: domain2D

sequence
type(domain1D) :: x
type(domain1D) :: y
integer :: pe
type(domain2D), pointer :: west, east, south, north

end type domain2D

(1,1)

(ni,nj)

(is,js)

(ie,je)

14

The domain2D type contains all the necessary information to define the
global, compute and data domains of each task, as well as the PE asso-
ciated with the task. The PEs from which remote data may be acquired to
update the data domain are also contained in a linked list of neighbours.

15

mpp domains mod calls:

� mpp define domains()

� mpp update domains()

type(domain2D) :: domain(0:npes-1)
call mpp_define_domains((/1,ni,1,nj/), domain, xhalo=2, yhalo=2)
...
!allocate f(i,j) on data domain
!compute f(i,j) on compute domain
...
call mpp_update_domains(f, domain(pe))

16

mpp io mod: a parallel I/O interface

mpp io mod is a set of simple calls to simplify I/O from a parallel process-
ing environment. It uses the domain decomposition and message passing
features of mpp mod and mpp domains mod . It is designed to deliver
high-performance I/O from distributed data, in the form of self-describing
files (verbose metadata).

17

mpp io mod features

� Simple, minimal API, with freedom of access to native APIs.

� Strong focus on performance of parallel write.

� Accepts netCDF format, widely used in the climate/weather commu-
nity.

� May require post-processing, generic tool for this to be provided by
GFDL.

18

mpp io mod output modes

mpp io mod supports three types of parallel I/O:

� Single-threaded I/O: a single PE acquires all the data and writes it out.

� Multi-threaded, single-fileset I/O: many PEs write to a single file.

� Multi-threaded, multi-fileset I/O: many PEs write to independent files
(requires post-processing).

19

mpp io mod API

� mpp io init()

� mpp open()

� mpp close()

� mpp read()

� mpp write()

� mpp write meta()

20

Metadata

Since the datasets are required to be compact (comprehensively self-describing)
we associate metadata in the file header associated with each axis and
field in the file. Metadata contains names and units for each variable, as
well as associating each field with a number of axes. Optional attributes
can be specified to describe data masks, missing data, scaling, packing,
etc. These use the derived types axistype and fieldtype use associ-
ated from mpp io mod .

21

mpp open

The key call is mpp open(). Most information about type of I/O to be
performed is contained here:

call mpp open(unit, file, action=MPP WRONLY, format=MPP IEEE32,

access=MPP SEQUENTIAL, threading=MPP SINGLE)

Format can be one of MPP ASCII, MPP IEEE32, MPP NATIVE, or MPP NETCDF.

Single-threaded I/O from multiple PEs means PE0 will acquire all the data
and do the actual write.

22

Multi-threaded I/O

call mpp open(unit, file, action=MPP WRONLY, format=MPP IEEE32,

access=MPP SEQUENTIAL, threading=MPP MULTI, fileset=MPP MULTI

)

Multi-threaded I/O can have all PEs write to a single file or each to an
independent file, which must later be assembled (a generic tool for this is
available). It offers the possibility of high-performance I/O when parallel
filesystems are buggy or slow.

23

mpp io mod calling sequence
type(domain2D) :: domain(0:npes-1)
type(axistype) :: x, y, z, t
type(fieldtype) :: field
integer :: unit
character*(*) :: file
real, allocatable :: f(:,:,:)
call mpp_define_domains((/1,ni,1,nj/), domain)
call mpp_open(unit, file, action=MPP_WRONLY, format=MPP_IEEE32, &
access=MPP_SEQUENTIAL, threading=MPP_SINGLE)

call mpp_set_filespec(unit, ’-F cachea’)
call mpp_write_meta(unit, x, ’X’, ’km’, ...)
...
call mpp_write_meta(unit, field, (/x,y,z,t/), ’Temperature’, ’kelvin’, ...)
...
call mpp_write(unit, field, domain(pe), f, tstamp)

24

mpp io mod performance on T90/T3E

Multi-threaded I/O offers a simple way to stripe the data across as many I/O
channels and disk channels as are available, using an appropriate combi-
nation of mpp open specs and assign.

On GFDL systems, we have DD-302 disks with a peak I/O rate of 10Mb/s
available on both the T90 and the T3E, and DA-302 disk arrays with a peak
I/O rate of 40 Mb/s for large well-formed I/O on T90. T3E I/O is mediated
by the O/S PEs, allowing two channels.

mpp io mod shows linear scaling on DD-302s up to 4 PEs on T90, but is
limited on the T3E to 20Mb/s. On the T90 4-way parallel writes to DA302
for multifile I/O has been measured up to 160 Mb/s from 4 PEs to 4 files.

25

Conclusions

� mpp io mod provides a very simple set of calls for writing compact
datasets from distributed data. It has proved versatile and easy to
use, and currently has become the labwide basis for all I/O in GFDL
models.

� It provides access to underlying I/O environments (such as assign)
and is easily extensible to any I/O API. It currently provides standard
fortran and netCDF I/O.

� It is publicly available through my GFDL webpage:

http://www.gfdl.gov/˜vb

26

